Posted on

Dirty Cow vulnerability: Beginners guide

Hello, aspiring ethical hackers. This blogpost is a beginner’s guide to Dirty COW vulnerability. Assigned CVEID, CVE-2016-5195, this vulnerability affects Linux kernel version 2.6.21 since 2007. To exploit this vulnerability, the hackers need to first gain initial access on the target system.

What is this Dirty COW vulnerability?

Dirty COW is a Linux privilege escalation vulnerability which is caused due to a race condition in the way the Linux kernel handled copy-on-write functions. The name Dirty COW came from this Copy-On-Write (COW). By exploiting this vulnerability, an unprivileged user can gain access to the read-only memory mapping subsequently elevating their privileges on the system.

Which kernels are vulnerable?

All the Linux kernels from versions 2.x to 4.x before 4.8.7 are vulnerable to this Dirty COW vulnerability. Let’s demonstrate this vulnerability on a Ubuntu 12 system. To exploit this vulnerability, the hackers need to first gain initial access on the target system.

Download this exploit from Github and extract its contents. It is a C program as shown below.

Compile this code using inbuilt GCC compiler in Ubuntu system. This exploit creates a new user named ‘firefart’ with root privileges on the target system by writing to the /etc/passwd file. Usually, creating an user with root privileges in not possible for low privileged users on Linux systems. But this is a privilege escalation vulnerability.

Now, let’s execute the exploit as shown below. It will prompt you to create a new password for the new user “firefart” it is creating.

Login as the newly created user to see if the exploit was successful in exploiting the vulnerability and creating the news user “firefart”.

As you can see, a new user named “firefart” has been created on the target system with root privileges.

Posted on

Privilege Escalation guide for beginners

Hello aspiring Ethical Hackers. In this blogpost, you will learn in detail and clearly about Privilege escalation. Privilege escalation is an act of gaining elevated access to resources that are normally restricted to an application or user. To understand privilege escalation better, you need to first understand about privileges. Since hacking mostly deals with exploiting of operating systems, let me explain you about how privileges in a operating system are assigned.

Since Operating Systems (OS) are meant for user interaction and perform some specific functions you should have noticed that different users are assigned different privileges on a system.

Let’s see the example of the Windows operating system. Windows OS has generally 7 types of accounts. When I am talking about accounts, I am talking about local user accounts instead of remote or online accounts. A local user account is defined locally on a device (computer) and are assigned rights and permissions on that particular device only. The types of Windows user accounts are given below.

When you do a fresh installation of Windows (Windows 7 to 11), the first user account that is created during setup is the Administrator account, As the name suggests, the Administrator account is a default local user account (account created during Windows installation) used for system administration. This account has full control of the files, directories, services and other resources on the local device. As you might have experienced by now, an administrator account can create, delete and assign permissions to other users.

This default Administrator account can neither be deleted or locked but it can be disabled or renamed. Windows setup disables the built-in administrator account after installation of Windows and creates another local account that is a member of the administrators group.

The newly created user belonging to the Administrator group has same powers as the default administrator account. Since this is too risky if some malicious user gains access to the system as Administrator user, Windows provides option to create an account called standard account. Most organization provide their workers a standard account. A standard account on Windows can run almost all application on a Windows system and perform all other day-to-day computing tasks.

However, to perform some tasks like installing programs or applications, making changes to the registry etc and other operations that require elevated privileges, the standard user is asked for credentials of Administrator of the system through the user Account control. Simply put, you cannot make any major changes to the operating system with standard account.

Apart from these two accounts, Windows has some default local user accounts that are automatically created while operating system is installed. They first one you need to learn about is the “SYSTEM” account. This account is used by the operating system and its services running under Windows. This account doesn’t show up in user manager which means you cannot login with this account.

It belongs to Windows and used by all Windows processes. You can view the processes running with this “SYSTEM” privileges from details tab of the Window Task Manager.

The ms08_067 vulnerability affected a process svchost.exe that runs with SYSTEM privileges. So, once you exploit it, you automatically get SYSTEM privileges. It can be exploited remotely and grant SYSTEM PRIVILEGS to attackers. No wonder it is considered very CRITICAL.

Another local default user account is the “Network service” account. This account is used by the service control manager (SCM). It is used to present the computer credentials while it is communicating with remote servers. Similarly, Windows has an account called “Local Service” which is also used by the service control manager. It has minimum privileges on the local computer.

Linux systems too have different types of user accounts. They are 1) Super user account 2) Regular account 3) System account 4) Service accounts.

On Linux, the Super User account is the most powerful account and is the default administrator of the Linux system. This account is popularly known as root account. The root account has unlimited control on the Linux system and you can literally do anything you want with this account.

The root user in Linux has (#) symbol on their terminal. All other users who are later added are together known as regular accounts. Regular accounts are similar to “standard account” on Windows and to perform administrative actions on the OS, they need to use sudo or su command. Apart from these two accounts, Linux has “system account” and “service account” that are created during the installation of the OS and are by OS processes just like “SYSTEM account on Windows. However, these accounts don’t run with superuser privileges. Service accounts are created whenever a service is installed on the system.

Since you are now accustomed with privileges and user accounts with different privileges, you can now understand privilege escalation.

What is privilege escalation?

Privilege escalation is an act or process of gaining access to privileges of the other user account using any means or techniques. Normally privileges of user account with higher privileges are targeted by hackers.

Privilege escalation is of two types: They are,

  1. Horizontal privilege escalation.
  2. Vertical privilege escalation.

1. Horizontal Privilege Escalation:

In horizontal privilege escalation, an attacker gaining access to the privileges of another user with same rights as him but with access to some other resources. For example, imagine on a Linux system, you gained access as a regular user (user_1). On the same system, there is another regular user (user_2) with same rights as him but with access to the MySQL databases. Elevating privileges to this user (user_2) can give you access to MySQL database.

2. Vertical Privilege escalation:

In cyber security or hacking, when anyone says “privilege escalation”, they are talking about this type of privilege escalation most of the time. In vertical privilege escalation, an attacker with low privileges tries to gain access to higher privileges.

Techniques used for Privilege escalation

Attackers use various techniques to elevate privileges. Some of the most general techniques are given below.

1. Social Engineering:

In Social Engineering, attackers somehow convince high privileges users to give access their credentials. These techniques include phishing, spear phishing attacks etc. For example, let’s say the attackers gained access to the email of the user with low privileges. From this email, he/she can send an email to the user with high privileges and somehow convince him/her to give any credentials.

In the first week top of September 2023, Okta, a company providing Identity services warned its users of social engineering attacks to obtain super administrator privileges on the organizations using Okta’s services. In these attacks, attackers performed social engineering attacks against IT service desk personnel by calling them and convincing them to reset multi-factor authentication (MFA’s) of high privileged users. Then attackers (allegedly APT Muddled Libra) abused these high privileged super admin accounts to impersonate users of the compromised organizations.

2. Password cracking:

Sometimes attackers crack the passwords of high privileged users to be used in privilege escalation.

3. Exploiting vulnerabilities:

This is one of the popular methods of escalating privileges. In this technique, attackers exploit vulnerability in software installed on the target system to elevate privileges. For example, PrintNightmare, Zerologon, Fodhelper etc in Windows and Dirtypipe, DirtyCow, PWNKIT, Netfilter, Heartbleed and Looney Tunables.

4. Misconfigurations:

In this type of attack, attackers use any misconfiguration on the target system for privilege escalation. These misconfigurations can include weak passwords, setting empty string as password, unsecured network service, open ports and exposed services etc. Examples are exploiting cronjobs and exploiting SetUID bits etc.

Many APT’s and Threat Actors exploit the recently (before patches are applied) released local privilege escalation vulnerabilities to elevate their privileges.  

Posted on

SetUID privilege escalation in Linux

Hello, aspiring Ethical Hackers. In this article, you will learn how to perform SetUID privilege escalation in Linux. In our previous article, we have exploited cron jobs to change SetUID bit of an executable. What exactly is a SetUID bit?

SETUID stands for Set User ID on execution. This allows a user with low privileges to run a command with higher privileges. The difference between SUDO and SETUID is that in SUDO you can execute a command only if the root user can do it.

With the concept of SETUID understood, let’s see how binaries with SETUID bit set can be found. One way to find them is by using find command as shown below.

setuid privilege escalation


Here are some examples of gaining root privileges by exploiting programs with SETUID bit set.

1. bash

2. csh

3. env

4. nice

5. node

6. setarch

7. stdbuf

8. strace

9. taskset

10. tclsh

11. time

12. timeout

13. unshared

14. xargs

15. php

16. expect

17. find

18. python

19. flock

20. gdb

21. ionice

22. logsave

23. make

These are some examples of linux privilege escalation by exploiting SETUID bit.

Posted on

Linux Privilege Escalation : Cron Jobs

Hello aspiring Ethical hackers. In this article you will learn how to exploit Cron jobs for Linux Privilege Escalation. If you are familiar with Windows Task Scheduler you will readily understand what cron is. Yes, it is used to schedule jobs or commands in Linux.
For example you have a Linux server and want to clean cache regularly once a day. You can do this manually everyday or schedule a job to do this daily without your intervention. Here’s where cron jobs assist you. You can assign a job in cron. Sometimes these jobs are assigned with root privileges and these can be exploited to gain root privileges. Let’s see it practically.

For this article, we have a target on which we already gained a shell. Then I ran the PE.sh privilege escalation script on the target to find ways to elevate privileges on the target.

As I scroll down the output of our PE.sh file, we can see our target has some cron jobs set.

linux privilege escalation with cron jobs

As you can see in the above images, we can set cron jobs monthly, daily or hourly. But our job here is to not schedule cron jobs. It is to exploit them. As we scroll down further, we can see the format of a cron job.

In the above image, you can see the exact format of a cron job. It is minutes first, hours, day of month, month and day of week. We can see a cron job named /opt/new_year.sh that is scheduled to run at the 00:00 time of first day of the first month of every year. That is the occasion of New Year.

But what does * * * * * mean? It means these cron jobs are scheduled to run every minute of every hour of every day of the week (i.e daily) , every month. That typically means these jobs run each and every minute. The important thing to notice here is that all these jobs are running as user “root”.

Let’s manipulate one the these scripts, let’s say /opt/my_script.sh. We have a SETUID bit set on “dash” shell, one of the shells installed on the target system.(We will see in a short while what SETUID is). This can be seen in the image below.

We are editing the my_script.sh file with a command “chmod u-s /bin/dash”. This will remove the SETUID bit. Wait for one minute and check the /bin/dash command.

The SETUID bit is removed. Not just that, we can add new users on the target system as shown below.

That’s how cron jobs can be exploited for linux privilege escalation.

Posted on

PrintNightmare, Privilege Escalation in Powershell

PrintNightmare is a critical vulnerability affecting the Microsoft Windows operating systems. The recently disclosed vulnerability is present in the print spooler service of Microsoft Windows. The printer spooler service is used for printing services and is turned on by default. The versions of Windows vulnerable to PrintNightmare include Windows 7 to Windows 10 and windows Server 2008 to the latest version of Windows Servers.

The PrintNightmare vulnerability has two variants : one is enabling remote code execution (CVE-2021-34527) and the other privilege escalation (CVE-2021-1675). In this article, readers will see a demonstration of exploiting the privilege escalation vulnerability in PrintNightmare.
For this demonstration, we will use Windows 10 version 1809. The Powershell Script we used in this demo can be downloaded from Github.

In this scenario, imagine I already have access to the target machine as a user with low privileges. Let me demonstrate it to you. The first thing I need to confirm is whether the printer spooler service is running on the target system or not. This can be done using powershell command “Get-Service -Name “spooler”“.

The print spooler service is running. Now I can exploit it. Before that let me show you that I am a user with limited privileges i.e as “user 1” with very limited privileges.

Next, I already downloaded the Powershell script I need to exploit the Printnightmare vulnerability .So I moved to the Downloads folder where the Powershell script is saved. Once I am inside that folder, I run the command

Import-Module .\ <script Name>“as shown below.

Once the Powershell module is imported, I can execute the script with command
Invoke-Nightmare -NewUser “<username to create >” -NewPassword <password for that new user> DriverName “PrintMe”
This command will create a new user with administrator privileges.

How to exploit printnightmare

In the image above, you can see the existence of new user named “hacker” which I created. Now, let’s check the privileges of this user.

As readers can see, the new user I created belongs to the local administrators group. I reboot the system and try to login as that user.

The exploitation is successful.